pyrimidine

pyrimidine is an extensible framework of genetic/evolutionary algorithm by Python. See pyrimidine’s documentation for more details.

LOGO

Why

– Why is the package named as “pyrimidine”?

– Because it begins with “py”. – Are you kidding? – No, I am serious.

If you have more questions, then log in google group and post your questions.

Download

It has been uploaded to pypi, so download it with pip install pyrimidine, and also could download it from Github.

Video tutorials

An gentle introduction

Idea

We view the population as a container of individuals, each individual as a container of chromosomes, and a chromosome as a container (array) of genes. This container could be represented as a list or an array. The Container class has an attribute element_class, which specifies the class of the elements within it.

Following is the part of the source code of BaseIndividual and BasePopulation.

class BaseIndividual(FitnessModel, metaclass=MetaContainer):
    element_class = BaseChromosome
    default_size = 1

class BasePopulation(PopulationModel, metaclass=MetaContainer):
    element_class = BaseIndividual
    default_size = 20

There are two main kinds of containers: list-like and tuple-like. See the following examples.

# individual with chromosomes of type _Chromosome
_Individual1 = BaseIndividual[_Choromosome]
# individual with 2 chromosomes of type _Chromosome1 and _Chromosome2 respectively
_Individual2 = MixedIndividual[_Chromosome1, _Chromosome2]

Math expression

$s$ of type $S$ is a container of $a:A$, represented as follows:

s = {a:A}:S  or  s: S[A]

We could define a population as a container of individuals or chromosomes, and an individual is a container of chromosomes.

Algebraically, an individual with one chromosome is equivalent to a chromosome mathematically. A population could also be a container of chromosomes. If the individual has only one chromosome, then just build the population based on chromosomes directly.

The methods are the functions or operators defined on $s$.

Use

Main classes

import

Just use the command from pyrimidine import * to import all of the algorithms.

To import all algorithms for beginners, simply use the command from pyrimidine import *.

To speed the lib, use the following commands.

from pyrimidine import BaseChromosome, BaseIndividual, BasePopulation # import the base classes form `base.py` to build your own classes

# Commands used frequently
from pyrimidine.base import BinaryChromosome, FloatChromosome # import the Chromosome classes and utilize them directly
# equivalent to `from pyrimidine import BinaryChromosome, FloatChromosome`
from pyrimidine.population import StandardPopulation, HOFPopulation # For creating population with standard GA 
# the same effect with `from pyrimidine import StandardPopulation, HOFPopulation`
from pyrimidine.indiviual import makeIndividual # a helper to make Individual objects, or `from pyrimidine import makeIndividual`

from pyrimidine import MultiPopulation # build the multi-populations
from pyrimidine import MetaContainer # meta class for socalled container class, that is recommended to be used for creating novel evolutionary algorithms.

from pyrimidine.deco import fitness_cache, basic_memory # use the cache decorator and memory decorator

from pyrimidine import optimize # do optimization implictly with GAs

from pyrimidine.pso import Particle, ParticleSwarm # for PSO
from pyrimidine.es import EvolutionStrategy # for ES as a variant of GA

To import other classes or helpers, please see the docs.

subclasses

Chromosome

Generally, it is an array of genes.

As an array of 0-1s, BinaryChromosome is used most frequently.

Individual

just subclass MonoIndividual in most cases.

from pyrimidine.individual import MonoIndividual
from pyrimidine.chromosome import BinaryChromosome

# or from pyrimidine import MonoIndividual, BinaryChromosome

class MyIndividual(MonoIndividual):
    """individual with only one chromosome
    we set the gene to 0 or 1 in the chromosome
    """
    element_class = BinaryChromosome

    def _fitness(self):
        ...

Since the helper makeIndividual(n_chromosomes=1, size=8) could create such an individual, it is equivalent to

from pyrimidine.individual import binaryIndividual

class MyIndividual(binaryIndividual()):
    # only need to define the fitness
    def _fitness(self):
        ...

If an individual contains several chromosomes, then subclass MultiIndividual or PolyIndividual. It could be applied in multi-real-variable optimization problems where each variable has a separative binary encoding.

In most cases, we have to decode chromosomes to real numbers.

from pyrimidine.individual import BaseIndividual
from pyrimidine.chromosome import BinaryChromosome

class _Chromosome(BinaryChromosome):

    def decode(self):
        """Decode a binary chromosome
        
        if the sequence of 0-1 represents a real number, then override the method
        to transform it to a number
        """

class ExampleIndividual(BaseIndividual):
    element_class = _Chromosome

    def _fitness(self):
        # define the method to calculate the fitness
        x = self.decode()  # will call decode method of _Chromosome
        return evaluate(x)

If the chromosomes in an individual are different with each other, then subclass MixedIndividual, meanwhile, the property element_class should be assigned with a tuple of classes for each chromosome.

from pyrimidine.individual import MixedIndividual

class MyIndividual(MixedIndividual):
    """
    Inherit the fitness from ExampleIndividual directly.
    It has 6 chromosomes: 5 are instances of _Chromosome, 1 is an instance of FloatChromosome
    """
    element_class = (_Chromosome,)*5 + (FloatChromosome,)

It equivalent to MyIndividual=MixedIndividual[(_Chromosome,)*5 + (FloatChromosome,)]

Population

from pyrimidine.population import StandardPopulation

class MyPopulation(StandardPopulation):
    element_class = MyIndividual

It is equivalent to MyPopulation = StandardPopulation[MyIndividual].

Initialize randomly

random is a factory method!

Generate a population, with 50 individuals and each individual has 100 genes:

pop = MyPopulation.random(n_individuals=50, size=100)

When each individual contains 5 chromosomes, use

pop = MyPopulation.random(n_individuals=10, n_chromosomes=5, size=10)

However, we recommand to set default_size in the classes, then run MyPopulation.random()

from pyrimidine.population import StandardPopulation

class MyPopulation(StandardPopulation):
    element_class = MyIndividual // 5
    default_size = 10

# equiv. to

MyPopulation = StandardPopulation[MyIndividual//5]//10

In fact, random method of BasePopulation will call random method of BaseIndividual. If you want to generate an individual, then just execute MyIndividual.random(n_chromosomes=5, size=10), or set default_size, then execute MyIndividual.random().

Evolution

evolve method

Initialize a population with random method, then call evolve method.

pop = MyPopulation.random(n_individuals=50, size=100)
pop.evolve()
print(pop.solution)

set verbose=True to display the data for each generation.

evolve method mainly excute two methods:

History

Get the history of the evolution.

stat={'Mean Fitness':'mean_fitness', 'Best Fitness': lambda pop: pop.best_individual.fitness}
data = pop.history(stat=stat)  # use history instead of evolve

stat is a dict mapping keys to function, where string ‘mean_fitness’ means function lambda pop:pop.mean_fitness which gets the mean fitness of the individuals in pop. Since we have defined pop.best_individual.fitness as a property, stat could be redefined as {'Fitness': 'fitness', 'Best Fitness': 'max_fitness'}.

It requires ezstat (optional but recommended), an easy statistical tool developed by the author.

performance

Use pop.perf() to check the performance, which calls evolve several times.

Example

Example 1

Description

select some of ti, ni, i=1,...,L, ti in {1,2,...,T}, ni in {1,2,...,N}
the sum of ni approx. 10, while it does not repeat

The opt. problem is

min abs(sum_i{ni}-10) + maximum of frequencies in {ti}
where i is selected.

\(\min_I |\sum_{i\in I} n_i -10| + t_m \\ I\subset\{1,\cdots,L\}\) where $t_m$ is the mode of ${t_i, i\in I}$

import numpy as np

t = np.random.randint(1, 5, 100)
n = np.random.randint(1, 4, 100)

import collections

from pyrimidine.individual import makeBinaryIndividual
from pyrimidine.population import StandardPopulation


def max_repeat(x):
    # Maximum repetition
    c = collections.Counter(x)
    return np.max([b for a, b in c.items()])


class MyIndividual(makeBinaryIndividual()):

    def _fitness(self):
        x = abs(np.dot(n, self.chromosome)-10)
        y = max_repeat(ti for ti, c in zip(t, self) if c==1)
        return - x - y


class MyPopulation(StandardPopulation):
    element_class = MyIndividual

pop = MyPopulation.random(n_individuals=50, size=100)
pop.evolve()
print(pop.solution)  # or pop.best_individual.decode()

Note that there is only one chromosome in MonoIndividual, which could be got by self.chromosome.

In fact, the population could be the container of chromosomes. Therefore, we can rewrite the classes as follows in a more natural way.

from pyrimidine.chromosome import BinaryChromosome
from pyrimidine.population import StandardPopulation

class MyChromosome(BinaryChromosome):

    def _fitness(self):
        x = abs(np.dot(n, self)-10)
        y = max_repeat(ti for ti, c in zip(t, self) if c==1)
        return - x - y

class MyPopulation(StandardPopulation):
    element_class = MyChromosome

It is equiv. to

def _fitness(obj):
    x = abs(np.dot(n, obj)-10)
    y = max_repeat(ti for ti, c in zip(t, obj) if c==1)
    return - x - y

MyPopulation = StandardPopulation[BinaryChromosome].set_fitness(_fitness)

Example2: Knapsack Problem

One of the famous problem is the knapsack problem. It is a good example for GA.

We set history=True in evolve method for the example, that will record the main data of the whole evolution. It will return an object of pandas.DataFrame. The argument stat is a dict from a key to function/str(corresponding to a method) representing a mapping from a population to a number. These numbers of one generation will be stored in a row of the dataframe.

see # examples/example0

#!/usr/bin/env python3

from pyrimidine import binaryIndividual, StandardPopulation
from pyrimidine.benchmarks.optimization import *

# generate a knapsack problem randomly
evaluate = Knapsack.random(n=20)


class MyIndividual(binaryIndividual(size=20)):
    def _fitness(self):
        return evaluate(self)

class MyPopulation(StandardPopulation):
    element_class = MyIndividual
    default_size = 10


pop = MyPopulation.random()

stat={'Mean Fitness':'mean_fitness', 'Best Fitness':'max_fitness'}
data = pop.evolve(stat=stat, history=True) # an instance of `pandas.DataFrame`

# Visualization
import matplotlib.pyplot as plt
fig = plt.figure()
ax = fig.add_subplot(111)
data[['Mean Fitness', 'Best Fitness']].plot(ax=ax)
ax.set_xlabel('Generations')
ax.set_ylabel('Fitness')
plt.show()

plot-history

Extension

pyrimidine is extremely extendable. It is easy to implement other iterative models or algorithms, such as simulation annealing(SA) and particle swarm optimization(PSO).

Currently, it is recommended to define subclasses based on IterativeModel as a mixin. (not mandatory)

In PSO, we regard a particle as an individual, and ParticleSwarm as a population. But in the following, we subclass it from IterativeModel

from random import random
from operator import attrgetter

import numpy as np

from pyrimidine.base import BaseIndividual
from pyrimidine.chromosome import FloatChromosome
from pyrimidine.mixin import PopulationMixin
from pyrimidine.meta import MetaContainer
from pyrimidine.deco import basic_memory

# pso.py
@basic_memory
class Particle(BaseIndividual):
    """A particle in PSO

    Extends BaseIndividual

    Variables:
        default_size {number} -- one individual represented by 2 chromosomes: position and velocity
        phantom {Particle} -- the current state of the particle moving in the solution space.
    """

    element_class = FloatChromosome
    default_size = 2

    # other methods

class ParticleSwarm(PopulationMixin):
    """Standard PSO
    
    Extends:
        PopulationMixin
    """

    element_class = Particle
    default_size = 20

    params = {'learning_factor': 2, 'acceleration_coefficient': 3,
    'inertia':0.75, 'n_best_particles':0.2, 'max_velocity':None}

    def init(self):
        for particle in self:
            particle.init()
        self.hall_of_fame = self.get_best_individuals(self.n_best_particles, copy=True)

    def update_hall_of_fame(self):
        hof_size = len(self.hall_of_fame)
        for ind in self:
            for k in range(hof_size):
                if self.hall_of_fame[-k-1].fitness < ind.fitness:
                    self.hall_of_fame.insert(hof_size-k, ind.copy())
                    self.hall_of_fame.pop(0)
                    break

    @property
    def best_fitness(self):
        if self.hall_of_fame:
            return max(map(attrgetter('fitness'), self.hall_of_fame))
        else:
            return super().best_fitness

    def transition(self, *args, **kwargs):
        """
        Transition of the states of particles
        """
        self.move()
        self.backup()
        self.update_hall_of_fame()

    def backup(self):
        # overwrite the memory of the particle if its current state is better than its memory
        for particle in self:
            particle.backup(check=True)

    def move(self):
        """Move the particles

        Define the moving rule of particles, according to the hall of fame and the best record
        """

        scale = random()
        eta = random()
        scale_fame = random()
        for particle in self:
            for fame in self.hall_of_fame:
                if particle.fitness < fame.fitness:
                    particle.update_vilocity_by_fame(fame, scale, scale_fame, 
                        self.inertia, self.learning_factor, self.acceleration_coefficient)
                    particle.position = particle.position + particle.velocity
                    break
        for particle in self.hall_of_fame:
            particle.update_vilocity(scale, self.inertia, self.learning_factor)
            particle.position = particle.position + particle.velocity

If you want to apply PSO, then you can define

class MyParticleSwarm(ParticleSwarm, BasePopulation):
    element_class = _Particle
    default_size = 20

pop = MyParticleSwarm.random()

Of course, it is not mandatory. It is allowed to inherit ParticleSwarm from for example HOFPopulation directly.

Library Design Style Versatility Extensibility Visualization
pyrimidine OOP, Meta-programming, Algebra-insprited Universal Extensible export the data in DataFrame
DEAP OOP, Functional, Meta-programming Universal Limited by its philosophy export the data in the class LogBook
gaft OOP, decoration pattern Universal Extensible Easy to Implement
geppy based on DEAP Symbolic Regression Limited -
tpot [@olson]/gama [@pieter] scikit-learn Style Hyperparameter Optimization Limited -
gplearn/pysr scikit-learn Style Symbolic Regression Limited -
scikit-opt scikit-learn Style Numerical Optimization Unextensible Encapsulated as a data frame
scikit-optimize scikit-learn Style Numerical Optimization Very Limited provide some plotting function
NEAT [@neat-python] OOP Neuroevolution Limited use the visualization tools

: Comparison of the popular genetic algorithm frameworks.

Contributions

If you’d like to contribute to pyrimidine, please contact me; and if you have noticed any bugs, use the GitHub issues page to report them.

LOGO